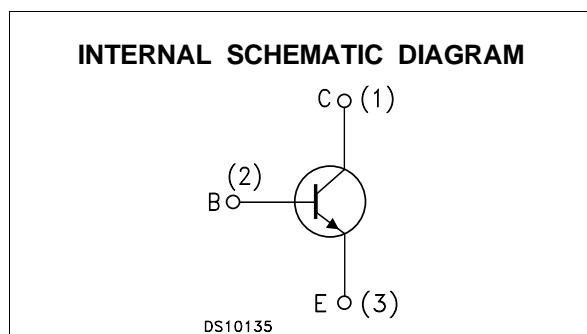

SMALL SIGNAL NPN TRANSISTORS

Type	Marking
BC547B	BC547B
BC547C	BC547C


- SILICON EPITAXIAL PLANAR NPN TRANSISTORS
- TO-92 PACKAGE SUITABLE FOR THROUGH-HOLE PCB ASSEMBLY
- BC547B - THE PNP COMPLEMENTARY TYPE IS BC557B
-

APPLICATIONS

- WELL SUITABLE FOR TV AND HOME APPLIANCE EQUIPMENT
- SMALL LOAD SWITCH TRANSISTORS WITH HIGH GAIN AND LOW SATURATION VOLTAGE

TO-92

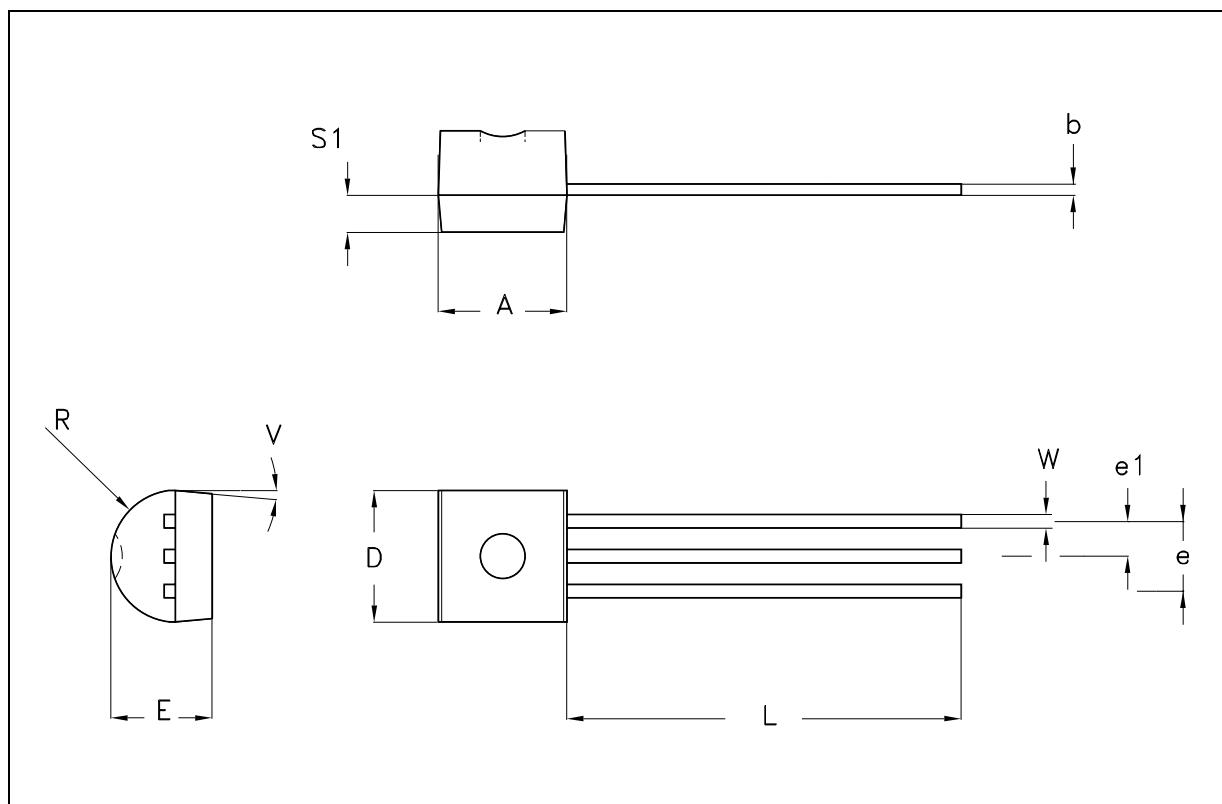
ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CBO}	Collector-Base Voltage ($I_E = 0$)	50	V
V_{CEO}	Collector-Emitter Voltage ($I_B = 0$)	45	V
V_{EBO}	Emitter-Base Voltage ($I_C = 0$)	6	V
I_C	Collector Current	100	mA
I_{CM}	Collector Peak Current	200	mA
P_{tot}	Total Dissipation at $T_C = 25^\circ\text{C}$	500	mW
T_{stg}	Storage Temperature	-65 to 150	$^\circ\text{C}$
T_j	Max. Operating Junction Temperature	150	$^\circ\text{C}$

BC547B / BC547C

THERMAL DATA

$R_{thj\text{-amb}}$ •	Thermal Resistance Junction-Ambient	Max	250	$^{\circ}\text{C}/\text{W}$
$R_{thj\text{-Case}}$ •	Thermal Resistance Junction-Case	Max	83.3	$^{\circ}\text{C}/\text{W}$


ELECTRICAL CHARACTERISTICS ($T_{\text{case}} = 25^{\circ}\text{C}$ unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
I_{CBO}	Collector Cut-off Current ($I_E = 0$)	$V_{CB} = 30 \text{ V}$ $V_{CB} = 30 \text{ V}$ $T_C = 150^{\circ}\text{C}$			15 5	nA μA
I_{EBO}	Emitter Cut-off Current ($I_C = 0$)	$V_{EB} = 5 \text{ V}$			100	nA
$V_{(BR)CEO}^*$	Collector-Emitter Breakdown Voltage ($I_B = 0$)	$I_C = 10 \text{ mA}$	45			V
$V_{CE(\text{sat})}^*$	Collector-Emitter Saturation Voltage	$I_C = 10 \text{ mA}$ $I_B = 0.5 \text{ mA}$ $I_C = 100 \text{ mA}$ $I_B = 5 \text{ mA}$		0.09 0.2	0.25 0.6	V V
$V_{BE(\text{sat})}^*$	Base-Emitter Saturation Voltage	$I_C = 10 \text{ mA}$ $I_B = 0.5 \text{ mA}$ $I_C = 100 \text{ mA}$ $I_B = 5 \text{ mA}$		0.7 0.9		V V
$V_{BE(\text{on})}^*$	Base-Emitter On Voltage	$I_C = 2 \text{ mA}$ $V_{CE} = 5 \text{ V}$ $I_C = 10 \text{ mA}$ $V_{CE} = 5 \text{ V}$	0.58	0.66	0.7 0.77	V V
h_{FE}	DC Current Gain	$I_C = 2 \text{ mA}$ $V_{CE} = 5 \text{ V}$ for BC547B for BC547C	200 420		450 800	
f_T	Transition Frequency	$I_C = 10 \text{ mA}$ $V_{CE} = 5 \text{ V}$ $f = 100\text{MHz}$	100			MHz
C_{CBO}	Collector-Base Capacitance	$I_E = 0$ $V_{CB} = 10 \text{ V}$ $f = 1 \text{ MHz}$		1.5		pF
C_{EBO}	Emitter-Base Capacitance	$I_C = 0$ $V_{EB} = 0.5 \text{ V}$ $f = 1 \text{ MHz}$		11		pF
NF	Noise Figure	$V_{CE} = 5 \text{ V}$ $I_C = 200 \mu\text{A}$ $f = 1\text{KHz}$ $\Delta f = 200 \text{ Hz}$ $R_G = 2 \text{ K}\Omega$		2	10	dB

* Pulsed: Pulse duration = 300 μs , duty cycle $\leq 2\%$

TO-92 MECHANICAL DATA

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A	4.32		4.95	0.170		0.195
b	0.36		0.51	0.014		0.020
D	4.45		4.95	0.175		0.194
E	3.30		3.94	0.130		0.155
e	2.41		2.67	0.095		0.105
e1	1.14		1.40	0.045		0.055
L	12.70		15.49	0.500		0.609
R	2.16		2.41	0.085		0.094
S1	1.14		1.52	0.045		0.059
W	0.41		0.56	0.016		0.022
V	4 degree		6 degree	4 degree		6 degree

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics

© 2002 STMicroelectronics – Printed in Italy – All Rights Reserved
STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco -
Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

<http://www.st.com>